Abstract:This paper proposes a user-centric split federated learning (UCSFL) framework for user-centric cell-free multiple-input multiple-output (CF-MIMO) networks to support split federated learning (SFL). In the proposed UCSFL framework, users deploy split sub-models locally, while complete models are maintained and updated at access point (AP)-side distributed processing units (DPUs), followed by a two-level aggregation procedure across DPUs and the central processing unit (CPU). Under standard machine learning (ML) assumptions, we provide a theoretical convergence analysis for UCSFL, which reveals that the AP-cluster size is a key factor influencing model training accuracy. Motivated by this result, we introduce a new performance metric, termed the latency-to-accuracy ratio, defined as the ratio of a user's per-iteration training latency to the weighted size of its AP cluster. Based on this metric, we formulate a joint optimization problem to minimize the maximum latency-to-accuracy ratio by jointly optimizing uplink power control, downlink beamforming, model splitting, and AP clustering. The resulting problem is decomposed into two sub-problems operating on different time scales, for which dedicated algorithms are developed to handle the short-term and long-term optimizations, respectively. Simulation results verify the convergence of the proposed algorithms and demonstrate that UCSFL effectively reduces the latency-to-accuracy ratio of the VGG16 model compared with baseline schemes. Moreover, the proposed framework adaptively adjusts splitting and clustering strategies in response to varying communication and computation resources. An MNIST-based handwritten digit classification example further shows that UCSFL significantly accelerates the convergence of the VGG16 model.
Abstract:Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
Abstract:Importance weighted variational inference (VI) approximates densities known up to a normalizing constant by optimizing bounds that tighten with the number of Monte Carlo samples $N$. Standard optimization relies on reparameterized gradient estimators, which are well-studied theoretically yet restrict both the choice of the data-generating process and the variational approximation. While REINFORCE gradient estimators do not suffer from such restrictions, they lack rigorous theoretical justification. In this paper, we provide the first comprehensive analysis of REINFORCE gradient estimators in importance weighted VI, leveraging this theoretical foundation to diagnose and resolve fundamental deficiencies in current state-of-the-art estimators. Specifically, we introduce and examine a generalized family of variational inference for Monte Carlo objectives (VIMCO) gradient estimators. We prove that state-of-the-art VIMCO gradient estimators exhibit a vanishing signal-to-noise ratio (SNR) as $N$ increases, which prevents effective optimization. To overcome this issue, we propose the novel VIMCO-$\star$ gradient estimator and show that it averts the SNR collapse of existing VIMCO gradient estimators by achieving a $\sqrt{N}$ SNR scaling instead. We demonstrate its superior empirical performance compared to current VIMCO implementations in challenging settings where reparameterized gradients are typically unavailable.
Abstract:Federated Learning (FL) enables collaborative model training across large-scale distributed service nodes while preserving data privacy, making it a cornerstone of intelligent service systems in edge-cloud environments. However, in real-world service-oriented deployments, data generated by heterogeneous users, devices, and application scenarios are inherently non-IID. This severe data heterogeneity critically undermines the convergence stability, generalization ability, and ultimately the quality of service delivered by the global model. To address this challenge, we propose FLood, a novel FL framework inspired by out-of-distribution (OOD) detection. FLood dynamically counteracts the adverse effects of heterogeneity through a dual-weighting mechanism that jointly governs local training and global aggregation. At the client level, it adaptively reweights the supervised loss by upweighting pseudo-OOD samples, thereby encouraging more robust learning from distributionally misaligned or challenging data. At the server level, it refines model aggregation by weighting client contributions according to their OOD confidence scores, prioritizing updates from clients with higher in-distribution consistency and enhancing the global model's robustness and convergence stability. Extensive experiments across multiple benchmarks under diverse non-IID settings demonstrate that FLood consistently outperforms state-of-the-art FL methods in both accuracy and generalization. Furthermore, FLood functions as an orthogonal plug-in module: it seamlessly integrates with existing FL algorithms to boost their performance under heterogeneity without modifying their core optimization logic. These properties make FLood a practical and scalable solution for deploying reliable intelligent services in real-world federated environments.
Abstract:Semi-implicit variational inference (SIVI) enhances the expressiveness of variational families through hierarchical semi-implicit distributions, but the intractability of their densities makes standard ELBO-based optimization biased. Recent score-matching approaches to SIVI (SIVI-SM) address this issue via a minimax formulation, at the expense of an additional lower-level optimization problem. In this paper, we propose kernel semi-implicit variational inference (KSIVI), a principled and tractable alternative that eliminates the lower-level optimization by leveraging kernel methods. We show that when optimizing over a reproducing kernel Hilbert space, the lower-level problem admits an explicit solution, reducing the objective to the kernel Stein discrepancy (KSD). Exploiting the hierarchical structure of semi-implicit distributions, the resulting KSD objective can be efficiently optimized using stochastic gradient methods. We establish optimization guarantees via variance bounds on Monte Carlo gradient estimators and derive statistical generalization bounds of order $\tilde{\mathcal{O}}(1/\sqrt{n})$. We further introduce a multi-layer hierarchical extension that improves expressiveness while preserving tractability. Empirical results on synthetic and real-world Bayesian inference tasks demonstrate the effectiveness of KSIVI.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:AI agents are vulnerable to prompt injection attacks, where malicious content hijacks agent behavior to steal credentials or cause financial loss. The only known robust defense is architectural isolation that strictly separates trusted task planning from untrusted environment observations. However, applying this design to Computer Use Agents (CUAs) -- systems that automate tasks by viewing screens and executing actions -- presents a fundamental challenge: current agents require continuous observation of UI state to determine each action, conflicting with the isolation required for security. We resolve this tension by demonstrating that UI workflows, while dynamic, are structurally predictable. We introduce Single-Shot Planning for CUAs, where a trusted planner generates a complete execution graph with conditional branches before any observation of potentially malicious content, providing provable control flow integrity guarantees against arbitrary instruction injections. Although this architectural isolation successfully prevents instruction injections, we show that additional measures are needed to prevent Branch Steering attacks, which manipulate UI elements to trigger unintended valid paths within the plan. We evaluate our design on OSWorld, and retain up to 57% of the performance of frontier models while improving performance for smaller open-source models by up to 19%, demonstrating that rigorous security and utility can coexist in CUAs.
Abstract:We present HY-Motion 1.0, a series of state-of-the-art, large-scale, motion generation models capable of generating 3D human motions from textual descriptions. HY-Motion 1.0 represents the first successful attempt to scale up Diffusion Transformer (DiT)-based flow matching models to the billion-parameter scale within the motion generation domain, delivering instruction-following capabilities that significantly outperform current open-source benchmarks. Uniquely, we introduce a comprehensive, full-stage training paradigm -- including large-scale pretraining on over 3,000 hours of motion data, high-quality fine-tuning on 400 hours of curated data, and reinforcement learning from both human feedback and reward models -- to ensure precise alignment with the text instruction and high motion quality. This framework is supported by our meticulous data processing pipeline, which performs rigorous motion cleaning and captioning. Consequently, our model achieves the most extensive coverage, spanning over 200 motion categories across 6 major classes. We release HY-Motion 1.0 to the open-source community to foster future research and accelerate the transition of 3D human motion generation models towards commercial maturity.
Abstract:Attention sinks are tokens, often the beginning-of-sequence (BOS) token, that receive disproportionately high attention despite limited semantic relevance. In this work, we identify a class of attention sinks, which we term secondary sinks, that differ fundamentally from the sinks studied in prior works, which we term primary sinks. While prior works have identified that tokens other than BOS can sometimes become sinks, they were found to exhibit properties analogous to the BOS token. Specifically, they emerge at the same layer, persist throughout the network and draw a large amount of attention mass. Whereas, we find the existence of secondary sinks that arise primarily in middle layers and can persist for a variable number of layers, and draw a smaller, but still significant, amount of attention mass. Through extensive experiments across 11 model families, we analyze where these secondary sinks appear, their properties, how they are formed, and their impact on the attention mechanism. Specifically, we show that: (1) these sinks are formed by specific middle-layer MLP modules; these MLPs map token representations to vectors that align with the direction of the primary sink of that layer. (2) The $\ell_2$-norm of these vectors determines the sink score of the secondary sink, and also the number of layers it lasts for, thereby leading to different impacts on the attention mechanisms accordingly. (3) The primary sink weakens in middle layers, coinciding with the emergence of secondary sinks. We observe that in larger-scale models, the location and lifetime of the sinks, together referred to as sink levels, appear in a more deterministic and frequent manner. Specifically, we identify three sink levels in QwQ-32B and six levels in Qwen3-14B.
Abstract:Recent multimodal large language models (MLLMs) show great potential in natural image understanding. Yet, they perform well, mainly on reasoning in-view contents within the image frame. This paper presents the first study on out-of-view (OOV) understanding, i.e., the ability to reason objects, activities, and scenes beyond the visible frame of a perspective view. Our technical contributions are threefold. First, we design OpenView, a four-stage pipeline to massively generate multi-choice VQA by leveraging panoramic imagery to enable context-rich and spatial-grounded VQA synthesis with free-view framing. Second, we curate OpenView-Dataset, a high-quality synthetic dataset from diverse real-world panoramas to empower MLLMs upon supervised fine-tuning. Third, we build OpenView-Bench, a benchmark that jointly measures choice and rationale accuracy for interpretable and diagnosable evaluation. Experimental results show that despite having a large gap from human performance in OOV VQA answer selection, upon empowered by OpenView, multiple MLLMs can consistently boost their performance, uplifted from 48.6% to 64.1% on average. Code, benchmark, and data will be available at https://github.com/q1xiangchen/OpenView.